## Finding number of digits in n’th Fibonacci number

Given a number n, find number of digits in n’th Fibonacci Numbers. First few Fibinacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ….

Input : n = 6 Output : 1 6'th Fibonacci number is 8 and it has 1 digit. Input : n = 12 Output : 3 12'th Fibonacci number is 144 and it has 3 digits.

A **simple solution** is to find n’th Fibonacci Number and then count number of digits in it. This solution may lead to overflow problems for large values of n. A**direct way** is to count number of digits in the nth Fibonacci number using below Binet’s Formula.

fib(n) = (Φ^{n}- Ψ^{-n}) / √5 where Φ = (1 + √5) / 2 Ψ = (1 - √5) / 2 The above formula can be simplified, fib(n) = round(Φ^{n}/ √ 5) Here round function indicates nearest integer. Count of digits in Fib(n) = Log_{10}Fib(n) = Log_{10}(Φ^{n}/ √ 5) = n*Log_{10}(Φ) - Log_{10}√5 = n*Log_{10}(Φ) - (Log_{10}5)/2

As mentioned in this G-Fact, this formula doesn’t seem to work and produce correct Fibonacci numbers due to limitations of floating point arithmetic. However, it looks viable to use this formula to find count of digits in n’th Fibonacci number. Below is C++ implementation of the formula.

/* C++ program to find number of digits in nth Fibonacci number */ #include<bits/stdc++.h> using namespace std; // This function returns the number of digits // in nth Fibonacci number after ceiling it // Formula used (n * log(phi) - (log 5) / 2) long long numberOfDigits(long long n) { if (n == 1) return 1; // using phi = 1.6180339887498948 long double d = (n * log10(1.6180339887498948)) - ((log10(5)) / 2); return ceil(d); } // Driver program to test the above function int main() { long long i; for (i = 1; i <= 10; i++) cout << "Number of Digits in F(" << i <<") - " << numberOfDigits(i) << "\n"; return 0; }

**Output:**

Number of Digits in F(1) - 1 Number of Digits in F(2) - 1 Number of Digits in F(3) - 1 Number of Digits in F(4) - 1 Number of Digits in F(5) - 1 Number of Digits in F(6) - 1 Number of Digits in F(7) - 2 Number of Digits in F(8) - 2 Number of Digits in F(9) - 2 Number of Digits in F(10) - 2

**References:** http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html#section2https://en.wikipedia.org/wiki/Fibonacci_number This article is contributed by **Ayush Khanduri**. If you like GeeksforGeeks and would like to contribute, you can also write an article usingcontribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.